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Abstract

In fair classification, we often ask:"what does it mean to be fair, and how is fairness
measured?" Previous approaches to defining and enforcing fairness rely on a set
of statistical fairness definitions, with each definition providing its own unique
measurement of bias. In this work, we provide preliminary results showing that
the Wasserstein distance can provide a more comprehensive fairness measurement
than existing methods, and can also measure fairness with respect to a broad class
of fairness notions that can encapsulate the already existing fairness definitions.

1 Introduction

Paralleling the ongoing research centered on discrimination in machine learning [3, 6], is a series of
critiques discussing how fair machine learning research has the potential to reinforce normative and
potentially harmful ideas of fairness in their implementation [1, 9, 12]. There have been a number
of fair machine learning solutions that have fallen short when audited for their ability to reduce
real-world discrimination, in addition to satisfying some computationally tractable fairness objectives
[4, 8, 11].

We examine machine discrimination in the context of historically protected attributes, such as race
or gender. Indeed, there is a growing literature developing strategies for the detection and audit
of discriminatory machine learning models[2, 8, 14], with respect to the aforementioned attributes.
These audits typically rely on the observance of some group-level summary-statistics of a classifier
or dataset. For example, the commonly cited disparate impact legal doctrine states that a process is
biased if an advantaged group receives the positive treatment at a rate disproportionate to that of the
disadvantaged group [5]. Under the disparate impact fairness notion, a classifier is fair if it assigns
the positive outcome to all groups at the same rate. The difference between classification rates is then
typically used as a measurement of the classifier’s bias. This style of fairness measurement is not
unique to disparate impact. Under the notion of equal opportunity, another popular fairness definition,
we check that the group-conditioned true positive rates of a classifier (e.g. the group-wise rate at
which those who deserve1 a loan receive a loan) are the same across protected attributes. In this
same context, it is also thought that the difference between true positive rates (TPRs) across groups,
is a reasonable measurement for the bias produced by the classifier under this fairness notion. We
summarize the shortcomings of this style of audit in the follow ways:

1. A classifier may appear unbiased according to one fairness definition, but could reveal bias
when measured according some other definition. The question of "which fairness definition
to enforce" is left to the discretion of the practitioner, as recent results from Kleinberg et
al. [10] show it is generally impossible to satisfy multiple fairness notions simultaneously.
Moreover there is no standard metric of bias that is common to all group fairness definitions,
therefore making it difficult to interpret these measurements across different definitions.

1the notion of deserving is typically represent by ground truth. In this example, we would say those that
deserved a loan, are those who repaid a loan they received
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2. These audits can reveal discrimination across protected groups, but reveal very little about
the structure of discrimination for various subgroups or at the individual level. For example,
the COMPAS algorithm, a popular predictive policing tool, claims equal predictive accuracy
across racial groups, but when only considering defendants who have no prior criminal
history, the algorithm’s accuracy claim no longer holds; under this same algorithm, the error
rate for first-time black defendants is nearly 48% higher than the same rate for their white
counterparts.

Herein, we provide preliminary results for a novel audit technique that addresses these shortcomings:
it can reveal violations of both group and individual level fairness, while also being able to audit a
classifier with respect to a flexible class of of fairness notions. We broadly describe fairness as a
probability distribution over outcomes, and use optimal transport to study the difference between
an observed distribution of outcomes and some corresponding fair distribution. We offer that the
corresponding distance between distributions, as measured by the Wasserstein metric, represents the
total bias of a classifier, or dataset.

2 Related Work

This work differs from existing studies at the intersection of optimal transport and fairness in a
few key ways. In Flip-Test [2] the authors use optimal transport maps to test a classifier for bias.
The mappings proposed by their optimal transport framework provide a "what-if" fairness report,
describing what an individual’s features would be, if they were to have their protected attribute
changed. Under this comparative study, structural differences in classification between groups can
be better examined. We extend their work by demonstrating that optimal transport mappings can
standardize the measurement of bias for both datasets and classifiers. In addition, a number of works
demonstrate the use of optimal transport as a repair method for unfair datasets [13, 15, 7].

3 Preliminaries

We study fairness in the context of binary classification. Allow X ⊆ Rd to be a set of covariates,
A = {0, 1} to denote the protected attribute, and Y = {0, 1} to be some binary decision variable.
In general, we say that Y = 1 denotes the positive classification, and Y = 0 denotes the negative
outcome. We are interested in learning a classifier f over some dataset D = (xi, ai, yi). We write
predictions from the model as f(x) = Ŷ . Finally, allow µ, ν to be a distribution over classification
vectors Y = {y ∈ Rd+ :

∑d
i=1 yi}. In general, every yi denotes the likelihood of an individual

obtaining the ith outcome. In our binary classification setup there are only two possible outcomes,
however this model can easily be extended to a multi-class classification task.

4 Wasserstein Distance

We use the Wasserstein Distance to measure distances between probability distributions on a given
metric space (Y, c).

Definition 4.1 (pth-Wasserstein Distance). The pth Wasserstein distance between probability mea-
sures µ and ν over Y is given by:

Wp(µ, ν) ≡
(

inf
γ∈Γ(µ,ν)

∫
Y×Y

c(y1, y2)pdγ(y1, y2)

) 1
p

where Γ is the set of couplings over distributions µ and ν. A coupling is a joint distribution over
Y × Y with marginals µ and ν. Intuitively, we interpret the Wasserstein distance as the minimum
cost of transforming one distribution to another, in this case, transforming µ to ν. The Wasserstein
Distance, is closely related to the solution to the Monge-Kantorovich optimal transport problem,
described below.
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Figure 1: We compare the Wasserstein Metric to the Disparate Impact (DI) ratio for two alpha levels.
The Wasserstein metric reveals less bias as we decrease alpha towards the (trivially) fair scenario
when all applicants are rejected, whereas the DI-Ratio increases towards perfect fairness for both
alpha levels.

4.1 Optimal Transport Maps

Consider the following discretized optimal transport problem between distributions µ, ν:

γ∗ ≡ arg inf
γ∈Γ(µ,ν)

∑
y2∈Y2

∑
y1∈Y1

c(y1, y2)γ(y1, y2)

Similarly to the Wasserstein distance, the goal of the optimal transport problem is to describe a precise
plan, as to how to reconfigure the distribution objects in Y1, so that it "looks like" the distribution
of objects in Y2. Recall, The cost function c : Y × Y → R is a metric specifying the cost of each
potential pairwise transformation between objects in Y1 and Y2. Thus, we will call γ∗ the optimal
transport mapping; from this mapping, the Wasserstein distance can be computed. Intuitively, we
may think of the mapping as a matrix γ ∈ Rd×d where each γi,j describes the magnitude of shift for
the ith object in Y1 to the jth in Y2, in some arbitrary transportation plan.

5 Case Studies

Consider the following toy example. Blue College is looking to audit their admissions data. We
assume that the college can estimate the likelihood P (Y = 1|X) for a given student with GPA
x ∈ X to be admitted into the college. In general Blue’s applicants come from two secondary
schools: expensive private School A, and public School B. Blue College would like to check that their
admissions policy is not biased with respect to an applicant’s school. Looking at their admissions
data, Blue College observes the following:

1. For students in School A, the probability of being accepted P (Y = 1|X = x) = P (Y =
1) = 30%.

2. For students in School B, the probability of being accepted P (Y = 1|X = x) = 1 for the
top 30% of applicants, and P (Y = 1|X = x) = 0 for the bottom 70% of applicants.

Suppose the school wishes to be fair according to the disparate impact rule.
Definition 5.1 (Disparate Impact (80% Rule)). A model is said to admit disparate impact if:

P (Y = 1|School = B)

P (Y = 1|School = A)
≤ τ = 0.8 (1)
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In the above model, we see that Blue college accepts roughly 30% of the applicants from both
schools. This implies that P (Y=1|School=A)

P (Y=1|School=B) = 1, and so the model does not admit disparate impact
and would be considered "fair" with respect to this fairness definition. In fact, if we assume WLOG
P (Y = 1|School = B) ≤ P (Y = 1|School = A) then τ = 1 represents the fairest possible
outcome. Quite clearly, this model is not fair as it puts the bottom 70% of students from School B at
a disadvantage, while also offering an advantage to the top 30% of students at school B.

5.1 Auditing Disparate Impact

We evoke the above scenario in the following example. Consider a dataset where all GPAs x ∼ U(0, 4)
but P (Y = 1|School = A) ∼ Bernouili(α), P (Y = 1|School = B,X > 4(1 − α)) = 1,
and P (Y = 1|School = B,X ≤ 4(1 − α)) = 0 where α ∈ {.2, .3}. We run an experiment
where we generate labels according to the above model, and compare the disparate impact ratio
P (Y=1|School=A)
P (Y=1|School=B) to the Wasserstein distance. We use the `2-norm between classification vectors2 as
a cost function in our Wasserstein computation. In Figure 1 we see that as we increase the number of
samples in our experiment, the disparate impact ratio increases towards one, whereas the Wasserstein
distance remains relatively constant. This experiments demonstrates an unfair setting: the lower 1−α
of applicants from School B are disadvantaged compared to their School A counterparts. However,
according to the disparate impact measurement, the admissions decision becomes perfectly fair as
more samples are drawn, whereas the Wasserstein distance does not change.

5.2 Fair Policy

This optimal transport framework can serve as a unifying framework for studying all group fairness
definitions. For example, consider equal opportunity:

Definition 5.2. Equalized Opportunity We say that a generative model P (Y |X) satisfies equal
opportunity, if for ground truth label Y ∗ the following holds

Pr(Y = 1 | Y ∗ = 1, A = 0) = Pr(Y = 1 | Y ∗ = 1, A = 1)

In order to measure bias with respect to equal opportunity, one could construct a transport mapping
between individuals in protected attribute groups with ground truth label Y ∗ = 1 that were assigned
the positive classification. Recall, we assume that one group can be designated as the advantaged
group, and the other as the disadvantaged group. The Wasserstein distance measures the difference
in outcomes between the advantaged group and the disadvantaged group. In a realistic scenario,
whenever a machine learning practitioner can designate a sample of individuals who are considered
to have been treated fairly, with this optimal transport framework, the Wasserstein distance from this
sample to any other sample can be computed, thus revealing the difference between the fair treatment
group to the observed group.

6 Future Work

We’ve shown evidence that the Wasserstein distance can be used to measure fairness with respect to
several existing fairness definitions. In section 5.1 we also show that the Wasserstein distance can
reveal bias that is often hidden by current measurements. In future work, we would like to explore
the following:

1. An optimal transport map reveals pairs of individual where the individuals have similar
classification outcomes. The Wasserstein metric, when considered for individual points, can
also provide insight into violations in individual fairness as we can compare the distance in
feature space of two individuals who have similar outcomes in the classification space.

2. The optimal transport map can be used to extend notions of subgroup fairness to the feature
space. Indeed, we may observe which subsets of the feature space are being discriminated
against, and study how this relates to some observed discrimination with respect to a
protected attribute.

2an m-dimensional classification vector is a vector y ∈ Rm such that
∑m

i=1 yi = 1.
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